Jupiter

Question - Integration

First differentiate each of the following functions:
$\diamond x^{2}+3 x+2$
$\diamond x^{2}+3 x$
$\diamond \frac{1}{3} x^{3}+\frac{3}{2} x^{2}$
Using your answers above, can you give the integral of $f(x)=2 x+3$? i.e.

$$
\int 2 x+3 \mathrm{~d} x=?
$$

Question - Integration areas under curves

Write the integral notation for what integral you would need to calculate to find the area under the curve $f(x)=x^{2}+1$ between $x=1$ and $x=4$.
(You can do the calculation if you wish)

Question - Definite integration

Given that the indefinite integral of $\cos (2 x)+4 x$ is $\frac{1}{2} \sin (2 x)+2 x^{2}+C$, calculate

$$
\int_{0}^{\pi} \cos (2 x)+4 x \mathrm{~d} x
$$

Question - Checking your answer

Use www.desmos.com/calculator or some other graphical calculator to sketch the function from the previous question $(\cos (2 x)+4 x)$. Was the answer to the previous question positive or negative? Can you see why from the graph?

Question - Integration

Find the indefinite integral of the following function:

$$
f(x)=\frac{1}{x^{2}}+\frac{1}{x}+1+x
$$

Question - Integration

Given that the derivative of $\sin (4 x+3)$ is $4 \cos (4 x+3)$ and that the derivative of $\cos (4 x+3)$ is $-4 \sin (4 x+3)$ you use one of these facts to find the following integral.

$$
\int 24 \cos (4 x+3) d x
$$

