Mars

Question - Differentiation

What is the derivative of $f(x)=\sin (2 x)+x^{3}-x^{-2}$?

Question - Differentiation and logs

Using the 'rules of \log arithms' fact that $\log (a b)=\log (a)+\log (b)$ explain why the derivatives of $\log (x), \log (2 x), \log (3 x)$ and $\log (4 x)$, are all the same function.

Question - Composition of functions

Re-write $h(x)=\sin (3 x+2)$ as a function of a function, i.e. as $h(x)=f(g(x))$ for some f and g.

Question - The chain rule formula

If function $h(x)=f(g(x))$ then state the formula for $h^{\prime}(x)$ (the derivative of h with respect to x).

Question - Using the chain rule

Let $h(x)=\log \left(3 x^{2}+x+4\right)$. First write h as a function of a function. Then find the derivative of h with respect to x. Try and write your answer as a fraction of functions.

Question - Using the chain rule

Let $u(x)=e^{x^{2}+1}$. First write u as a function of a function. Then find the derivative of u with respect to x. Use your answer to identify the only value of x where the gradient is zero (i.e the only stationary point of the function).

The power, P, transmitted through fluid-filled pipes in a hydaulic braking system can be written as

$$
P=k\left(V-c V^{3}\right)
$$

where k and c are both constants which depend on system quantities (like pipe length, diameter etc.). The key quantity we consider varying here is V, the fluid velocity.
(i) By calculating $\frac{\mathrm{d} P}{\mathrm{~d} V}$ find the stationary points of P, then
(i) by calculating $\frac{\mathrm{d}^{2} P}{\mathrm{~d} V^{2}}$ find which stationary point is a maximum.

An extended version of this problem appears in HELM Worksheet 12.2: Maxima and Minima as Engineering Example 3 if you wish to read further.

