## Venus

## Question - Trigonometric identities

Given that $\cos (A)=\frac{3}{5}$, use a trigonometric identity of your choice to calculate the value of $\sin (A)$.

## Question - Double-angle formulae

(This is a pretty dry topic so only 1 question here)
Use the double-angle formula for $\cos (A-B)$ to simplify $\cos \left(\frac{3 \pi}{2}-\theta\right)$.

## Question - Hyperbolic identities

Calculate $\cosh ^{2}(x)-\sinh ^{2}(x)$ and $\cosh ^{2}(x)+\sinh ^{2}(x)$ to see what they equal.
(Use the $e^{x}$ formulae)
How do the identities you discover compare to the equivalent identities with $\sin ^{2}(x)$ and $\cos ^{2}(x)$ ?

## Question - Graph sketching

Sketch (by hand) the graph of $y(x)=x^{2}+1$ for $x$ between -4 and 4 . Use your sketch to describe when the gradient of $y$ is negative, when it is 0 and when it is positive.

## Question

(You may wish to use an online sketch program like desmos.com/calculator) Use the internet to sketch $y(x)=x^{3}-3 x$ for $x$ between -4 and 4 . Use your sketch to describe when the gradient of $y$ is negative, when it is 0 and when it is positive.

## Follow-up

Use a Table of Standard Derivatives to work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and by factorising the answer, work out exactly where the function's turning points are.

