GLasGow Caledonian University
 QUESTIONS FOR DROP-IN

Earth

Question - Differentiation notation

If you are given a function $f(x)$ and told $y=f(x)$ then list as many different notations as you can for the derivative of f with respect to x.

Question - Differentiation of powers of x

Using the standard result, what is $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=2 x^{3}$? What if instead $y=\frac{2}{x^{3}}$?

Question - Differentiation to find gradients

Given that $y=5 x^{2}+3 x$ find the gradients of y when $x=-2$ and when $x=6$.

Question - Differentiation of standard functions

Using a list/table of standard derivatives find the derivative of the following:
(i) $\sin (x)$
(ii) $\sin (2 x)$
(iii) $\sin (3 x)$
(iv) $\cos (x)$
(v) $-\cos (x)$
(vi) $-2 \cos (x)$
(vii) $-\cos (2 x)$
(viii) \sqrt{x}
(ix) $\frac{1}{\sqrt{x}}$

Question - Differentiation of real-world formulae

If a charge V, is described by this formula

$$
V=\frac{Q}{4 \pi \epsilon_{0} r}
$$

as a function of distance r, then calculate

$$
-\frac{\mathrm{d} V}{\mathrm{~d} r}
$$

(you may assume that Q, π and ϵ_{0} are constants).

Question - Differentiation, trigonometry and graph sketching

Suppose that $f(t)=\sin (t)$, by calculating the derivative of f (with respect to time, t) work out at which values of t the gradient of f is zero.

What does the curve of f look like at these points?
Would you answer be different if $f(t)=50 \sin (t)$?

