Venus

Question - Trigonometric identities

Given that $\cos (A)=\frac{3}{5}$, use a trigonometric identity of your choice to calculate the value of $\sin (A)$. i.e. not by using a calculator to find the angle A

Question - Angle addition formulae

(This is a pretty dry topic so only 1 question here)
Use the angle addition formula for $\cos (A-B)$ to simplify $\cos \left(\frac{3 \pi}{2}-\theta\right)$.

Question - Hyperbolic identities

Calculate $\cosh ^{2}(x)-\sinh ^{2}(x)$ and $\cosh ^{2}(x)+\sinh ^{2}(x)$ to see what they equal.
(Use the e^{x} formulae for $\cosh (x)$ and $\sinh (x)$, e.g. $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ then do lots of algebra!)
How do the identities you discover compare to the equivalent identities with $\sin ^{2}(x)$ and $\cos ^{2}(x)$?

Question - Graph sketching

Sketch (by hand) the graph of $y(x)=x^{2}+1$ for x between -4 and 4 . Use your sketch to describe when the gradient of y is negative, when it is 0 and when it is positive.

Question

Use the internet to sketch $y(x)=x^{3}-3 x$ for x between -4 and 4 . Use your sketch to describe when the gradient of y is negative, when it is 0 and when it is positive.

I recommend the online sketch program found at https://www.desmos.com/calculator

Follow-up

Use a Table of Standard Derivatives to first work out $\frac{d y}{d x}$, then by factorising this answer, work out exactly where the function's turning points are.
(Turning points are also called stationary points, extremal points, extrema, maxima and minima or even just maxes and mins!)

